Hydrologic drought prediction under climate change: Uncertainty modeling with Dempster–Shafer and Bayesian approaches

نویسندگان

  • Deepashree Raje
  • P. P. Mujumdar
چکیده

a r t i c l e i n f o Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster–Shafer (D–S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D–S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D–S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D–S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster–Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D–S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D–S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change. Uncertainty in projected climate change arises …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel risk-based analysis for the production system under epistemic uncertainty

Risk analysis of production system, while the actual and appropriate data is not available, will cause wrong system parameters prediction and wrong decision making. In uncertainty condition, there are no appropriate measures for decision making. In epistemic uncertainty, we are confronted by the lack of data. Therefore, in calculating the system risk, we encounter vagueness that we have to use ...

متن کامل

محاسبه فاصله عدم قطعیت بر پایه آنتروپی شانون و تئوری دمپستر-شافر از شواهد

Abstract Dempster Shafer theory is the most important method of reviewing uncertainty for information system. This theory as introduced by Dempster using the concept of upper and lower probabilities extended later by Shafer. Another important application of entropy as a basic concept in the information theory  can be used as a uncertainty measurement of the system in specific situation In th...

متن کامل

belief function and the transferable belief model

Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...

متن کامل

Comparison of Bayesian and Dempster-Shafer Theory for Sensing: A Practitioner's Approach

This paper presents an applied practical comparison of Bayesian and Dempster-Shafer techniques useful for managing uncertainty in sensing. Three formulations of the same example are presented: a Bayesian, a naive Dempster-Shafer, and a Dempster-Shafer approach using a reened frame of discernment. Both the Bayesian and Dempster-Shafer (with a reened frame of discernment) yield similar results; h...

متن کامل

Bayesian dynamic modelling for nonstationary hydroclimatic time series forecasting along with uncertainty quantification

Forecasting of hydrologic time series, with the quantification of uncertainty, is an important tool for adaptive water resources management. Nonstationarity, caused by climate forcing and other factors, such as change in physical properties of catchment (urbanization, vegetation change, etc.), makes the forecasting task too difficult to model by traditional Box–Jenkins approaches. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010